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We explore the transient and the stationary behavior of proposed measures for chaotic dynamical sys-
tems, with particular reference to thermostated nonequilibrium systems. The Kawasaki distribution
function formalism, which is based on the Liouville equation, is shown to give a good description of the
transient measure. An orbital measure with a support based on unstable periodic orbits is shown to give
the stationary measure. Also, we emphasize the importance of determining the set of observables by
which a nonequilibrium measure can be defined. The stationarity of these methods is considered in both
the periodic orbit theory and the Liouville picture for the change in the distribution function.
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I. INTRODUCTION

Progress in the statistical mechanics of nonequilibrium
systems has been substantial over the past ten to fifteen
years. This is particularly evident in the theory and
simulation of perturbed equilibrium systems and the cal-
culation of transport coefficients [1,2]. In these studies it
is natural to consider an equilibrium (perhaps canonical)
ensemble, to which differing reservoirs of mass, momen-
tum, or energy are connected. The rate at which the
mass, momentum, or energy is transported gives the
desired transport coefficient. Conceptually this is a well-
defined macroscopic system, but from a microscopic
point of view it is difficult to handle both nonhomogene-
ous systems and the boundary between the system and
reservoir. On the other hand, mechanical linear response
theory for many-particle systems is relatively straightfor-
ward because the perturbing force acts explicitly on every
particle in the system. This led to the first significant ad-
vance where it was realized that it was possible to trans-
form a boundary driven thermal process into an
equivalent homogeneous mechanical process, where an
external field acts on each particle. Under the action of
the field the dissipative heating is proportional to the
square of the field, so going from linear to nonlinear sys-
tems requires the use of some form of heat reservoir to
achieve a steady state (stationary) system. As before, this
is difficult to achieve microscopically, so the solution
(which we consider as the second major advance) was to
transform the effect of a heat reservoir into an equivalent
homogeneous mechanical process. To do this we need to
define the temperature microscopically and then use
some mechanical constraint mechanism to maintain this
temperature to be constant (on either a microscopic or
macroscopic time scale). The Gaussian isokinetic ther-
mostat [1] keeps the total kinetic energy constant instan-
taneously (microscopic time scale), whereas the Nosé-
Hoover thermostat [3] fixes the average total kinetic ener-
gy (macroscopic time scale). Applying the two transfor-
mations (boundary condition to field and boundary condi-
tion to thermostat) to unperturbed equilibrium ensem-
bles, we obtain what we regard as generic nonequilibrium
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ensembles and it is these to which we restrict our con-
siderations in this paper. It should be clear that not all
nonequilibrium situations can be treated in the way sug-
gested above and these ensembles are generic in the sense
that we can apply them in many circumstances to the
study of the transport of conserved quantities (mass,
momentum, and energy).

Here we will consider the nonequilibrium ensemble ob-
tained from the color conductivity algorithm [4] with a
Gaussian isokinetic thermostat [5]. Choosing the system
to be infinitely periodic, with two particles in the central
(or simulation) cell, we obtain the simplest nontrivial sys-
tem that behaves in a way that we recognize as macros-
copically irreversible. That is, if we apply the perturbing
external field in a particular direction we always observe
a macroscopic current in the same direction (given a suit-
able sign convention for the current) and never in the op-
posite direction. A trivial coordinate transformation
maps this color conductivity system to a nonequilibrium
Lorentz gas [6,7]. The underlying microscopic dynamics
for this model is a set of equations of motion that are
time reversible, so that for every segment of phase space
trajectory that produces a physical current (that is, one in
the macroscopically observed direction) its time reverse
also occurs and has exactly the opposite current. This
produces one form of Loschmidt’s paradox [8], which can
be formulated as follows: how does irreversible behavior
emerge from systems of particles with reversible equa-
tions of motion? In this case, if both the forward and
time reverse trajectory exist, how does a nonzero current
arise? For our particular situation we can now provide a
dynamically based answer to those questions [9].

The phase space distribution function (by which we
may define a probability measure in phase space) is well
understood for systems that obey equilibrium statistical
mechanics. The microcanonical, canonical, and grand-
canonical ensembles are used regularly to model such sys-
tems. The description of nonequilibrium systems, on the
other hand, is much less developed and generally very
poorly understood. However, recent advances in the
theory of dynamical systems are having a very significant
impact in nonequilibrium statistical mechanics, given the
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unifying power of their language, which does not
differentiate between equilibrium and nonequilibrium sys-
tems. It is the aim of this paper to apply a technique
from dynamical systems theory—periodic orbit
theory —in the framework of nonequilibrium statistical
mechanics. We begin by illustrating the problems with a
pedagogical example: the generalized baker’s map
[10,11]. The features of this mapping help us to better
understand some aspects of the dynamics of more physi-
cally interesting systems. Then, we make the connection
between the Kawasaki formalism [1], a classical tool of
nonequilibrium statistical mechanics, and periodic orbit
theory in the special example of the nonequilibrium
Lorentz gas. This allows us also to answer some ques-
tions concerning the Kawasaki formalism.

The present work is organized as follows. Section II
introduces the baker’s map and discusses the convergence
of its dynamics to a stationary state. Section III is a brief
introduction to periodic orbit theory, while Sec. IV ap-
plies the prescriptions of such a theory to the baker’s
map. Section V presents the Kawasaki formalism, which
is then applied to the nonequilibrium Lorentz gas in Sec.
VI. In Sec. VII the applicability of the Kawasaki for-
malism to a stationary state is discussed in terms of
periodic orbits. Section VIII contains our concluding re-
marks, with some comment on the relevance of general-
ized dimensions for our problems.

II. THE DYNAMICAL EVOLUTION
OF THE BAKER’S MAP

Quite clearly the study of realistic models is complicat-
ed enough to hide many interesting features that can be
easily understood in terms of simple mappings. There-
fore, in this section we investigate the processes occurring
in the transient evolution of a simple dynamical
system —the generalized baker’s map [10,11]—that lead
to the final stationary distribution. In a generic chaotic
dynamical system, a given initial distribution in phase
space is subjected to a process of stretching, contraction,
and folding, which changes the distribution at every tirme
step, until a final stationary state is achieved. If the sys-
tem is dissipative, the contraction is stronger than the
stretching and the final distribution has a support that is
smaller than the initial support, while the densities of the
associated measures also change. (The support of a mea-
sure is the complement of the largest open set of vanish-
ing measure.) All of those effects are found in the gen-
eralized baker’s map, of which we now study a particular
case. Let [0,1]X[0,1] be the phase space and denote a
phase point by (x,y). The action of the map is given by

Xy +1=A0X,,
yn+1:A1yn’

— 1
Xp1=Apx, + 3,
Ins1=Aw,—1,

0=<y,<+;
(1)
<y, <1,

S

where A;=2 and A, =<1 are the expansion and contrac-
tion factors for the map. If A,=1 the map preserves the
uniform distribution (Lebesgue measure) on the square
and this fact is evident on all possible length scales. This
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is typical of equilibrium processes, like the Lorentz gas in
the absence of external fields [12], or of nonequilibrium
processes that take place in isolated containers, like the
adiabatic expansion of a gas [13]. This distinguishing
feature here is that the microscopic evolution is purely
Hamiltonian. However, we can find an analogy between
the baker’s map and dissipative systems, which do not
preserve the Lebesgue measure, by leaving A;=2 and re-
ducing A, in our baker’s map. Then, smaller values of A,
would correspond to the Lorentz gas with increasing
values of the field [7]. In this section we study the tran-
sient behavior of the dissipative baker’s map, with the
aim of obtaining the stationary behavior in the n—
limit, and we treat in detail the particular case A,= %

In the first iteration, the uniform measure on the
square evolves in the following way. We see, in Fig. 1(a),
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FIG. 1. (a) First iteration of the baker’s map acting on a uni-
form measure on the square. (b) Second iteration. (c) Third
iteration. At each step the number of rectangles increases by a
factor of 2 and the density on each increases.
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that the initial square is stretched and then cut and the
two pieces are mapped back into the initial square. There
are now two areas with vanishing measure and the sup-
port of the measure has shrunk, while the density on it
has increased, in such a way that the total mass of the
measure on the square is still one. In the second iteration
[Fig. 1(b)] two rectangles become four rectangles and
again the support is diminished, while the density is in-
creased to maintain the normalization of the measure.

These changes continue forever and in the process we
might expect to approach a stationary distribution, in ac-
cord with our expectations for physical dissipative sys-
tems. We will return to the problem of stationary mea-
sures later, but at present we restrict our considerations
to the transient measure. The evolution of the transient
measure can be followed by simply noting the position of
the left boundary of each rectangle in the support (which
we shall refer to as the left line), the widths of these rec-
tangles, and the uniform density of the measure in them.
In Table I we summarize the results for the first few steps
of the baker’s map where the initial distribution is uni-
form on the unit square. Note that, starting from the
uniform distribution in phase space, the dynamics evolve
the distribution into one that is nonuniform in the x
direction, but still uniform in the y direction. Indeed, in
one iteration of the map every existing rectangle has its
rightmost and the central sixth removed, producing two
new rectangles whose combined area is equal to two-
thirds of the original one. At the same time we observe
that the left line of the original rectangle remains and a
new left line is created.

Considering the baker’s map as a system of statistical
mechanical interest, we may ask how the relevant observ-
ables evolve in time during the transient. This amounts
to computing the averages of those functions of phase
with the transient measures produced by iterating the
map, starting from an initial ensemble (uniform in our ex-
ample). For instance, we can calculate the moments of
the transient distributions and it can be shown that after
M iterations the average value of x is given by

(x)M=% {H—

1
IM+1

) (2)

for which the limit as M — o is well defined and equals
(x),=2. Equation (2) depends upon the initial distribu-
tion being uniform. It is easy to see that if we take a
different initial measure, e.g., one that is uniform for

TABLE 1. Structure of the transient measure for the baker’s
map.

Step Left lines Width Density
0 0 1 1
1 1 3
: 07, i 3
: LUETT, H
3 0551w 37 5
1 3 \M
M 3 (3)
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0<y =1 and zero otherwise, the limiting average is un-
changed, but the approach to the limit is different. The
next moment of the distribution can be shown to con-
verge to (x?) = 2.

For this system, we can also define and calculate the
Gibbs entropy after M iterations to be

SM=— [dT f(,M)nf(T,M)=—Mmn(3), 3

where f(I',M )=(%)M on its support and zero elsewhere.
We see that S diverges linearly with M:

SM) . — . Similarly, if the Boltzmann entropy is
defined to be the logarithm of the volume of phase space
accessible to a particular macrostate and we assume that
the fraction of phase space covered by the rectangles of
nonvanishing measure corresponds to a single macro-
state, we get that the Boltzmann entropy behaves like

2M
AE

i=1

SM =1n =—MIn(3) . 4)

This is precisely the result we obtained for the Gibbs en-
tropy and it appears that we have an example of a none-
quilibrium, dissipative system where the two entropies
are the same at every state of the time evolution. The
values calculated here are those obtained by iterating an
initial uniform measure. Other choices for the initial dis-
tribution would, in general, lead to different values for
finite values of M.

As the evolution proceeds, the system is expected to
approach a stationary state, thus it seems natural to con-
sider what we would call the stationary measure for our
map, by looking at the behavior of the transient measures
in the limit as M — o. As we have seen, each application
of the baker’s map deletes two strips from each rectangle
and doubles the number of rectangles, endowing the
phase space with finer and finer structure. This process
continues indefinitely in such a way that the distribution
remains normalized and uniform on the current rectan-
gles. Therefore, every point of the phase space that does
not belong to a left line of a rectangle finds itself inside a
region of zero measure, after sufficiently many iterations,
and it would appear that the stationary distribution has
to be zero everywhere, except on the left lines, where it
should be uniform. However, any measure with a density
supported on a finite number of left lines immediately ap-
pears not to be stationary, as its mass is redistributed
over twice as many left lines with each iteration, thus
changing its support. Similarly, a uniform measure sup-
ported on all the infinitely many left lines would appear
to be nonstationary and unnormalized. In fact, consider
a distribution that assigns a mass pu uniformly to each left
line. One application of the map moves the mass of a
given left line onto two other left lines, so that the mass
on each left line decreases at every iteration. This actual-
ly holds for all measures that have a density along the
length of the left lines (i.e., those that are not singular in
the y direction). In fact, the dynamics merely stretches
the relevant distributions along the y direction, with the
total mass of a measure, nonetheless, always preserved.

These considerations look puzzling from a physical
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point of view and complement the observation that the
behavior of the Gibbs and Boltzmann entropies suggest
that the limit of the transient measures, as M — o, may
not even be well defined. Thus we may ask what it means
to start on the stationary state. Do we have a way of con-
structing the stationary distribution by assigning a cer-
tain weight to all the reasonable (e.g., Borel) subsets of
phase space?

A common way of avoiding this problem is to consider
a coarse graining of the phase space. We might interpret
this as some inherent limit of resolution. This leads to an
observation of stationarity when the measure is changing
on a length scale that is smaller than the graining length.
This aspect is not different from the Lebesgue measure
preserving case when we start with a different initial dis-
tribution. In fact, if we do not start with the uniform
measure, we will only approximate it more and more
closely as the number of iterations grows, but we will
never actually achieve it, unless we look at the phase
space in a nondetailed way. Thus the result of a coarse
graining is to make the measure seem to be stationary,
while leaving open the question of the arbitrariness of the
graining.

However, there is a difference between the stationary
distributions of Lebesgue measure preserving and
nonpreserving maps. Indeed, in the case of the measure
preserving baker’s map, we could start with the uniform
distribution in phase space, which would be preserved by
the dynamics at all length scales. On the contrary, for
the dissipative map we have considered, all distributions
appear not to be invariant under the application of the
map, unless a coarse graining is done. We argue that this
difference is what distinguishes nonequilibrium stationary
states from equilibrium ones, on the fine-grained level.

The question is then at what level can we speak of sta-
tionary states for nonequilibrium systems if the phase
space distribution functions are not invariants. In physi-
cal terms, the problem is that the phase space distribu-
tion is not a proper observable for the system and so
there is no way of testing it directly. In mathematical
terms, this is faced by studying measures, and their evolu-
tions, by furnishing the space to which they belong with
the appropriate topologies. In this way, the properties of
measures defined through a limiting procedure are not
tested directly but through the averages of the functions
by which the topology is defined. In a sense, it is the set
of such averages that is taken to constitute the definition
of a measure. Course grainings go somewhat in this
direction, as they correspond to using characteristic func-
tions of the graining cells (the characteristic function of a
set equals one on the set and zero elsewhere) as a descrip-
tion of the measure. This implies that one should be able
to describe stationary nonequilibrium states without hav-
ing to resort to the arbitrariness of such expedients.
Indeed, the answer to the problem is in the relaxation of
the requirement of looking at the phase space distribu-
tions directly, replacing it with the choice of the proper
measure spaces and their topologies. In more physical
terms, one must decide a priori what are the relevant ob-
servables and then study the evolution of the system in
terms of the evolution of the averages of those variables.
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Returning to the baker’s map, we note that for most
practical purposes it suffices to take powers of the phase
variables as observables (x suffices in our case), given the
density of polynomials in quite general function spaces.
This corresponds to the very familiar technique, in none-
quilibrium statistical mechanics, of studying the moments
of phase space distributions rather than the distribution
themselves. We see that the observables (x ) has a well-
defined limit as M -— o, whereas the Gibbs and
Boltzmann entropies must be excluded from our function
space because neither the distribution nor functions of it
(like the logarithm) can be regarded as observables.

The observations presented in this section are quite im-
portant. Without coarse graining, a stationary distribu-
tion is never observed in this dissipative system, whether
we start with a distribution on the left lines of the attrac-
tor or with a more general distribution in phase space.
On the contrary, if we do a graining, stationarity emerges
at a finite time determined by the size of the graining
cells. Had we looked in more detail in the phase space,
we would have found that the observed stationarity is
indeed a dynamical one, that is not reproduced on all
possible scales (thus it is not satisfactory from a theoreti-
cal viewpoint). It is better to furnish our distribution’s
space with the appropriate topology, defined by the set of
observables that are relevant to the physics of the prob-
lem. In this way we see that it does take an infinite
amount of time for the system to reach the stationary
state, but then the stationary distribution, indirectly
defined by the averages that it determines on the space of
observables, is invariant under the map by definition. It
would appear, then, that stationarity is an effect of our
limited ability of observation and that what distinguishes
equilibrium states from stationary nonequilibrium ones is
that nonequilibrium distribution functions can always be
observed on scales in which they appear nonstationary.
In the case of course graining we decide that the space is
granular to our measurement tools and the dynamics
look different with different tools; in the other case, using
a stronger or weaker topology (measuring more or fewer
observables) has the same effect. On the contrary, equi-
librium states such as the measure preserving baker’s
map appear stationary on all scales.

III. ORBITAL MEASURES

It has been proposed to use unstable periodic orbits
(UPOs) to calculate a sequence of approximations to the
stationary measure of a number of interesting dynamical
systems. Several different but closely related approaches
have been used to calculate averages of observables.
There is the periodic orbit expansion (POE) method
[7,14-16] and the cycle expansion method of Artuso,
Aurell, and Cvitanovic [17]. These two methods are
based upon the thermodynamic formalism of Ruelle and
are equivalent in the limit of long periods, in that they
converge to the same limiting measure. However, their
convergence properties are in general different. In either
of these approaches the average of a system property B is
written in terms of weighted contributions from UPOs.
In particular, for the POE method we can write
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s Af‘fOTiB(s)ds

=3
S A
iEP,

(B)=lim (B),= lim

n— o0 n— o

) (5)

where P, is set of UPOs of length n, A; is the largest
Lyapunov number (if there is only one expanding direc-
tion), and 7; is the period of the ith UPO. The largest
Lyapunov number is A; =exp(A;7;), where A; is the larg-
est Lyapunov exponent. In Eq. (5) we have considered a
system with continuous time evolution in which a Poin-
caré section can be introduced to transform the effective
motion to the study of the mapping from one intersection
with the Poincaré surface of section to a subsequent in-
tersection. In this way an UPO of length n implies that
on the nth intersection with the Poincaré surface the tra-
jectory has returned its initial condition. In general, the
time taken to evolve from the initial condition to the nth
intersection will depend upon both the initial condition
and the underlying (continuous time) dynamics. Howev-
er, if the dynamical system is a mapping (for example, the
baker’s map), then 7; =n for all periodic points of order
n.

An argument for the weighting of periodic orbits by
A; ! can be found in Ref. [10], where a general smooth
mapping is considered, x, ;;=F(x,). In particular, the
authors of Ref. [10] discuss the case of maps with hyper-
bolic attractors that have a dense set of periodic orbits.
Their argument can be summarized as follows. Imagine
that we partition the space into cells C;, where each cell
has as its boundaries stable and unstable manifolds. If
the cells are very small, the curvature of the boundaries
will be slight and can be neglected, so we can regard the
cells as parallelograms. Consider a given cell C;, and a
large number of initial conditions sprinkled within that
cell according to the natural probability measure on the
attractor. If we iterate each of these initial conditions n
times, then a small fraction of the initial conditions may
return to the cell C,. Since we assume the attractor to be
ergodic and mixing, this fraction is asymptotically equal
to the natural measure on the attractor in the cell u(Cy ).

In Fig. 2 we construct the nth forward iterate of C;

(A) ®)
u u
up
* + TI//AU
s [ 1
- ékAZj

FIG. 2. (a) Rectangle formed by the intersections of a pair of
stable and a pair of unstable manifolds. In (b) the rectangle
marked + is that part of the nth forward iterate of the initial
rectangle in (a) that returns to C,. Similarly, the rectangle
marked — is that part of the nth backward iterate of the initial
rectangle (a) that returns to C,. Clearly, as the intersection of
+ and — is wholly contained within the initial rectangle, the
intersection contains an nth-order hyperbolic periodic point.
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and denote it by + and the nth backward iterate and
denote it by —. The intersection of + and — must con-
tain a fixed point j of F” and the magnitudes of its unsta-
ble and stable eigenvalues are A;; and A,;. The rectangle
— is such that all the points in — return to C; after n
iterations. Denoting the lengths of the sides of the cell
C, by &, and 7, we see that the initial rectangle has area
Ex nkAl'jl and the final rectangle has area §; A,;7,. Since
the dynamics is expanding in the vertical direction, the
attractor measure is expected to vary smoothly in this
direction (i.e., it is expected to be a SRB measure) [18].
As the cell is small, we can treat the measure on the at-
tractor as if it were essentially uniform along the rectan-
gle —. Thus the fraction of the measure of C; occupied
by the strip is Aj;'. Since for n—co the fraction of ini-
tial conditions starting in C, that return to it is the un-
normalized density u(C, ), we have

w(C)= lim > A 6)
e k period-n
orbits in C;

Also note that, as n gets larger, Al_jl and A,; get exponen-
tially smaller while the number of fixed points of F" in
C, grows exponentially. Since we imagine that we can
make the partition into cells as small as we wish (with
reasonably smooth boundaries) by a covering of cells, the
result in Eq. (6) follows. Note that for maps, the period
of the periodic orbit does not appear in the formula for
the measure, as at every level n all the orbits have exactly
the same period, which can be factored out through the
normalization constant. On the contrary, for flows the
periods of different orbits, which account for the longitu-
dinal direction of the flow, are different and cannot be
simplified through the normalization constant. The gen-
eralization of this argument to systems with Poincaré sec-
tions of more than two dimensions leads to a stability
weight that is the product of the Lyapunov numbers for
all expanding directions of the dynamics. In all cases the
measure defined in Eq. (6) must be explicitly normalized
in order to calculate averages.

The cycle expansion formula can be derived through
the definition of a Ruelle £ function whose zeros are relat-
ed to the average of the phase variable B as follows (see
Ref. [17] for details). For simplicity, take a system with
complete, binary symbolic dynamics (such as the baker’s
map); the relevant § function takes the form

LB, I=1—to—t;—[tg —tot;]
—[too1 —totor 1= [tor1 —torti]l— """ (N

where
tp=—m, (8)

B™(x,,) is the sum of the values of the phase variable B
along the periodic orbit beginning from x.
Differentiating £(3,Q) =0 with respect to 3, the aver-
age of B is given by
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— 49
(B) 4B |0 9)
The terms in square brackets in Eq. (7) are called curva-
ture corrections and, for particular systems and particular
phase variables B, they are precisely equal to zero, thus
making the formalism very simple and effective.

The two methods outlined here—periodic orbit expan-
sions and cycle expansions—produce the same averages
in the limit where the lengths of the orbits tend to
infinity, thus they are equivalent from a theoretical point
of view. However, their performance in practical calcula-
tions, which are done at finite period, is different, as they
arrange in a slightly different fashion the same set of
data. Depending upon the circumstances, periodic orbit
expansions may converge faster than cycle expansions
(e.g., in the equilibrium Lorentz gas [15]) or vice versa
(e.g., for the baker’s map in the next section).

IV. ORBITAL MEASURES FOR THE BAKER’S MAP

As a simple example of the application of periodic or-
bit theory, let us consider the generalized baker’s map.
Observe that it is possible to label the orbits by assigning
a symbol to each of the two pieces of the map; for in-
stance, we can use the symbol O to identify a point in the
region 0=y <1, so that the next step in its evolution is
determined Ty, and we can assign the symbol 1 to a point

in <y <1, which is evolved by T';. These are
T, T

(x,y)——

1
2l (x,p)—s

3 3 2

i+l,2y—1J.
(10)

With the aid of this symbolic dynamics it is easy to find
all the periodic orbits for the baker’s map and then to
visualize how their points cluster in the support of the
measure. This is quite a trivial exercise for the baker’s
map, as its Lyapunov exponents are uniform in space and
the expansion and contraction rates in phase space do not
change in time.

The periodic orbits for the baker’s map up to period
four can be easily listed in terms of our binary symbolic
dynamics, given in Table II.

TABLE II. Cycle points for the perioidc orbits of lengths
1-4.

Length Symbol Cycle points

1 {0} 0,0
{1} (5D

2 {01} {((£,3),(%,3))

3 {001} {(52—2,3),<§%,%),(5;’2,§)

5 5 9

{011} (53032 3)(5s3)

4 {0001} {(1;@,4%),2(1%,%2)7,(%7}?,(Tga,{‘-s)l
(oor1) {(23—09’2;(%;3?)’1(3%,?1)1,(F,%)1}17 7
{0111} {5 (T 13 ) (e 15 ) (e )

We see that at every period n there is a one-to-one
correspondence between rectangles and the fixed points
of the n times iterated map. Each rectangle of nonvan-
ishing probability contains one fixed point of the nth
iterate of the uniform distribution. Indeed, due to the
smoothness of the map (except at y =1), we have that if a
point of a periodic orbit is in the interior of such a band,
it remains in the interior of a band of nonzero probability
for all the iterates of the map.

So now let us compare the results on the limit of the
transient measures, given in Sec. II, with those we get
from the limit of orbital measures. In the case where the
phase variable is B =x, all the curvature correction terms
in the Ruelle ¢ function vanish and we have
[&(B,Q@)] '=1—1t,—t,;=0 from which {x)=21 follows
immediately. Similarly, the distribution of periodic orbits
in phase space is such that the periodic orbit expansion
gives the correct result from the smallest period n=1.
However, for B=x?2 the curvature terms are nonzero and
we need the full expression for the § function, as well as
we need to extrapolate the results of POE to infinite
periods. A comparison of the different methods is
presented in Table III.

Given this picture, we can compute the asymptotic
behavior of the distribution function, in its approach to
the stationary state, by making use of our knowledge of
unstable periodic orbits. First we have, asymptotically,
that the measure of subsets of phase space that do not
contain a periodic orbit is vanishing. Second, in a neigh-
borhood of a given periodic orbit, phase space volumes
change in one iteration according to the formula
V—AA,V, where A, is the ith Lyapunov number of the
orbit, that is to say, the ith eigenvalue of the absolute
value of the Jacobian matrix of the map along the orbit.
Consequently, the distribution function changes as
f—A7'A;lf, in such a neighborhood. In our case
AjA,=2 for all orbits, so we get that the distribution
function grows a factor 2 at every iteration in all the re-
gions of the attractor. This is trivially correct, as we saw
in Sec. II; however, the use of periodic orbits gives also
the regions in which the stationary state is concentrated.
With this in mind, we now turn to the nonequilibrium
Lorentz gas.

TABLE III. Comparison of the results obtained for (x?2)
from the transient measures (rectangles), the periodic orbit ex-
pansion (POE), and the cycle expansion. The values for the
POE and cycle expansion at finite length bear no relation to the
transient measure, but are simply successive approximations to
the stationary average.

Length Rectangles POE Cycles

0 0.3333333

1 0.2453704 0.2812500 0.2812500

2 0.221707 8 0.1757813 0.228 5156

3 0.2144490 0.1947115 0.2163462

4 0.2120990 0.207 4219 0.2126953

5 0.2113238 0.206 869 8 0.2115186

6 0.2110662 0.2116672 0.2111307
0.2109375
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V. THE LIOUVILLE EQUATION
AND KAWASAKI DISTRIBUTION FUNCTION

The classical Liouville equation is obtained by consid-
ering an infinitesimal element of phase space containing a
fixed number of ensemble members [1]. The distribution
function (or density of the associated measure) is then
defined to be the number of ensemble members divided by
the volume of the phase element, apart from a normaliza-
tion constant. The rate of change of ensemble members
is calculated by looking at the flux through the surface of
the element. Taking the infinitesimal limit, with some as-
sumptions about the existence of a first derivative of the
density, the Liouville equation follows:

4 r(ry=— ()|
2 fM=—fM)o=1, (11)

where '=(q,,...,q35:P15---,P35) is the phase space
point representing the full description of the state of the
system.

An important point to note here is that the Liouville
equation constructs a complete balance between the loss
and gain of ensemble members in each phase space
volume element. As a result, the total number of ensem-
ble members is constant and we expect the distribution
function to remain normalized. This is quite different
from the derivation of the weights for orbital measures in
Sec. IlI, where we consider a cell whose boundaries are
the stable and unstable manifolds, and we are only in-
terested in those initial conditions that return to the cell.
We disregard the initial conditions that leave the cell. If
no initial conditions return to the cell then the measure of
the cell is zero. Another important distinction between
the Liouville equation and orbital measures is that the
Liouville equation requires an initial distribution and cal-
culates the time evolution of that distribution. Therefore,
the Liouville equation correctly describes the behavior of
the transient measures. The orbital measures, instead, are
a sequence of approximations to the long time limit of the
transient ones, which we term the stationary state. The
orbital measures are determined by the dynamics alone
and the only restriction on the initial distribution is that
it is taken from the set of those that converge to the er-
godic attractor approximated by the given set of periodic
orbits. Thus any information about the initial measure is
lost in the POE approach for most of the practical cir-
cumstances (e.g., in the case of Ref. [19], all absolutely
continuous measures with respect to Liouville measure
evolve to a unique multifractal ergodic attractor). As a
consequence, the Kawasaki distribution on the attractor,
which is approximated by orbital measures of larger and
larger period, is of a different nature to the transient,
which has support on the whole phase space. Indeed, the
transient retains the full dimension of the phase space, at
all finite times, while the stationary measure has a lower
(fractal) dimension. The reason is that the stationary
state is an idealized state, where it is assumed that an
infinite time has elapsed since the initial preparation of
the ensemble. This produces a support that has vanish-
ing Liouville measure, because the contracting effects of
the dynamics reduce the transverse thickness of the sup-
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port to zero. Therefore, in the stationary state the con-
tracting directions play no role, while both contracting
and expanding directions are important in the transient.
Despite these differences, the transient distribution ap-
proaches the ideal stationary state as ¢t — o, until the two
are indistinguishable to our observations. This is why we
can give physical meaning to the stationary states, for
which a number of mathematical techniques have been
developed, but are not available for the study of tran-
sients.

The derivation of the Kawasaki formalism for the evo-
lution of the distribution function [20,21] is a formally ex-
act consequence of the Liouville equation (given that the
distribution function is once differentiable). For a system
whose equations of motion can be written as

fli=%+ci'Fe’ p;,=F;,+D;'F,—ap; , (12)

where C;(I") and D,(I") are the phase variable couplings
to the external field F, (the rank of C; and D; is such that
when either is contracted into the external field F, the re-
sult is a vector). The Kawasaki formula for the distribu-
tion function can be expressed as

f(r,t)=f(r,0)exp[—BFefO’J(r(~s))ds , (13)

where f is the distribution function, which depends on
the phase space point I' and on the time ¢, while J(I") is
the dissipative flux. The introduction of an external field
that supplies energy to the system requires a thermostat-
ing mechanism to obtain stationarity (here we use the
Gaussian thermostat). J(I'") is then defined through the
rate of change of internal energy H,

N

1 . .
mPiPi —F;-q;

— LD, +F,;-C, |F,—3NkTa
m

=—2

i=1

=—J(I')F,—3NkTa . (14)

From the form of Eq. (13) we have two possibilities. We
can consider finite values of ¢, and study the evolution of
the distribution function with time (that is, study the
transient behavior), or we can take the limit ¢t — o, and
consider the steady state distribution function. However,
there are two major difficulties with the Kawasaki for-
malism. First, it is easy to see that for physically relevant
trajectories, the exponent in Eq. (13) is positive, which
implies that the probability of the initial conditions for
these trajectories f(I'y,¢) diverges to infinity as t— oo.
Second, the Gibbs entropy, defined as in Sec. II, diverges
to negative infinity, linearly with time [22]. This is analo-
gous to the divergence of the distribution, and therefore
of entropy, on the set of left lines that we observed in the
baker’s map. Despite the fact that the Kawasaki formula
follows immediately from the Liouville equation, these
two difficulties have remained unresolved and at times
have even led to doubts about the Kawasaki formalism.
The doubts are also raised because stationary states for
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systems of the kind described here do not have a density
in phase space, as the physical measure is singular and
concentrated on a fractal subset of the phase space. We
will see that these difficulties do not constitute a problem
if the transient and the stationary state are treated in
different fashions.

VI. KAWASAKI DISTRIBUTION
FOR THE LORENTZ GAS

The particular example of the nonequilibrium Lorentz
gas that we consider here has one pointlike particle mov-
ing in an arbitrarily complex periodic lattice of general
convex scatterers, with an external field in the x direction
and a Gaussian thermostat. The equations of motion are

a="L, p=F+F,—ap (15)

m

and, given the symmetry of the model, we can reduce the
study of its dynamics to an elementary cell (EC), whose
replications tile the whole plane. Thus we switch from
the original problem in the plane to an equivalent one in
the EC. In this way, the fact that a particle leaves the EC
in the plane from one of its sides and a new one enters
from the opposite side is represented in the reduced prob-
lem by the motion of a unique particle that keeps going
round a bounded surface, similarly to the motion on a
torus. Obviously, we must be careful while transforming
one problem into the other, so that appropriate
correspondences are made between the phase variables in
the plane and those that represent them in the EC. For
instance, in the EC there is no diffusion of particles be-
cause all trajectories remain bounded. However, one can
compute the relevant quantity for diffusion in the plane
even in the EC by looking at the total distance traveled
by a particle rather than just at the distance between ini-
tial and final points along the trajectory. This distinction
between the distance traveled and the distance between
points is important in the EC, while it is not so in the
plane.

Once the Lorentz gas problem has been transformed to
the EC, many tools from the theory of dynamical systems
and chaos become available, in particular, the POE tech-
nique. Quite clearly, the Lorentz gas with hard core
scatterers is not smooth, so the POE theory does not
strictly apply. Nonetheless, the method has been shown
to work well both with and without an external field
[7,9,12,14,15,23,24] and a possible mathematical explana-
tion of this can be found in [7,25]. We now explore the
connections between the POE and Kawasaki formalisms
for this system. The dissipation function for the field-
dependent Lorentz gas is given by J =p, /m =Xx. Substi-
tuting this into Eq. (13) gives the time evolution of the
distribution f according to the Kawasaki formula:

—PF, fot)&(r‘,—s)ds]

BF,Ax(T", —t)

f(I,t)=f(T,0)exp

=f(I',0)e (16)

It is most important to realize that Egs. (13) and (16) re-
late the density in the initial distribution at position I" to
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the density of the same phase space position some time
later. Moreover, this relation can be derived with the
same form on both phase spaces: the plane and the EC.
In the special case where I" belongs to a periodic orbit of
period 7, we can apply the Lyapunov sum rule [7]
BF,I(1)=(A;+A,)7. This rule relates the total deforma-
tion of the phase space around a trajectory, in a time 7, to
the displacement along the trajectory in the direction op-
posite to the external field /(7). For this, it is irrelevant
whether we are in the plane or in the elementary cell. In
fact, going down that trajectory in the plane for multiples
of 7, the same pattern is reproduced all times and so the
Lyapunov numbers computed for the periodic orbit are
also the correct ones for that trajectory. Then, in the
plane we have I(7)=Ax(7) and Ax(—t)=—Ax(t), from
which, substituting in Eq. (16), we obtain

F(T,r)=f(T,0)e Pt

:f( F,O)e — (A FAyT

=f(C,0A'ASY, (D)

where A, and A,, respectively, are the smallest and larg-
est Lyapunov numbers for the particular trajectory. This
shows another example where care must be used in going
from the plane to the EC. Relation (17) does not derive
from Eq. (16) for a periodic orbit and so it does not apply
directly to periodic orbits in the EC, because there
(1) Ax(7)=0. Nonetheless, it is the correct expression
for the variation of the distribution around a periodic
point of a generic dynamical system and Eq. (17) consti-
tutes a first link between the Kawasaki formalism and the
results of periodic orbit theory. Then, as the relation is
correct around the periodic orbit in the elementary cell,
its unfolding remains valid in the plane and we have a re-
lation valid both for the full and the reduced Lorentz gas
problems. The reason is that the Kawasaki formula
correctly gives the evolution of the distribution during
the transient in the plane, which happens to be identical
to the corresponding evolution in the elementary cell.

In fact, it is not necessary to begin with the Kawasaki
formalism to obtain this result. We can also obtain it
from more elementary considerations, as done for the
baker’s map. In the neighborhood of a periodic point we
see that the change in the volume of the element is deter-
mined by the Lyagl(lil(ivk )?umbers and is given by
V(t)=VoAA,=Vye ' . Therefore, if the element
is small enough and the distribution on it is smooth
enough, we have that the distribution changes in time as
the inverse of the change in volume giving Eq. (17). If we
continue this argument further by traversing the periodic
orbit repeatedly we find that each traversal gives another
factor of Aj'A;! and, because the contraction is
stronger than the expansion, the density grows
indefinitely. The same argument applies to each periodic
orbit in the EC and the result is that the distribution
grows without bounds around UPOs with nonvanishing
displacement in the plane, while it goes to zero on the
parts of phase space that have no orbits.

Now, it is not clear from the Kawasaki formula wheth-
er or not the distribution is normalized for any time after
t=0. This is typical of the apparent behavior of
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Kawasaki distribution functions. On physical grounds
the distribution function must be normalized because en-
semble members are neither created nor destroyed, but
the derivations do not show this clearly. Indeed, at every
point where there is a definite stationary current the dis-
tribution seems to blow up, despite the fact that the point
may belong to the support of the stationary state. How-
ever, looking at how the stationary state is approached
from the transient evolution, we realize that there must
be a relation between the reduction in support and the
growth of singularities, which results in a normalized dis-
tribution, similar to the baker’s map.

Note that all these considerations apply in the tran-
sient, not in the stationary, state; however the Lyapunov
numbers of the periodic orbits are characteristic of .the
stationary state. Thus the results derived above are to be
intended as valid asymptotically, that is to say, in the ap-
proach to the stationary state and very close to it.

The usual Schrodinger representation of the Kawaskai
formula is not the only possible expression. Evans and
Searles [26] have obtained a form that is suitable for La-
grangian phase space elements

f(L(2),t)=exp

J3Na(T(s)ds | £(0(0),0),  (18)

which we can see involves integrating a along a trajecto-
ry. The weakness of this approach is that, in general, the
integral of « is not an invariant quantity unless the initial
point corresponds to a periodic orbit. If the initial point
is a periodic orbit then we would obtain the product of
Lyapunov numbers as in Eq. (17).

VIIL. IS THE KAWASAKI
DISTRIBUTION STATIONARY?

We consider the reduction of the Lorentz gas to the
elementary cell. Then we can study the problem of sta-
tionarity of the Kawasaki distribution in the stationary
state from two points of view involving the use of period-
ic orbits. The first is to write the Liouville equation on a
periodic orbit, and then look at the evolution of a given
distribution on such periodic orbits, in terms of the solu-
tion of the Liouville equation. This can be done by not-
ing that, when the phase space is just one line in the
plane, we can parametrize the points on that line by a
unique coordinate g, representing the distance traveled
from a fixed origin, and then solve the Liouville equation
for f(q,q). Clearly, a uniform measure (in configuration
space) over a periodic orbit with constant speed must be
stationary, as time evolution along it merely corresponds
to a permutation of points, and the total distribution of
points is unchanged. Thus, on periodic orbits we easily
get stationarity of the distribution from the Liouville
equation. Note that a periodic orbit is the only trajectory
to which we can assign a uniform density of particles, be-
cause the other trajectories would end up with an unnor-
malized distribution. This shows that, pointwise, a distri-
bution on a generic chaotic trajectory cannot be station-
ary, not even in the stationary state, similarly to the re-
sults for the baker’s map.

The second way to prove stationarity of distributions
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on periodic orbits provides also an independent check of
the Kawasaki formalism in this context. A uniform dis-
tribution on the orbit may be interpreted as having a
number N of particles, equally spaced along its length,
and then we have

f(L,t)=£(T,0)exp | —BF, fo’—qu,.( —s)ds

= f(T',0)exp [BFE S Ag,(—1) ] . (19)

Now, our distribution is stationary if 3 ,Aq,(—¢)=0
for every instant of time ¢, but we know that this is not
the case except for all times that are a multiple of 7/N,
where 7 is the period of the orbit. Indeed, in such a time
all the particles move from their current site to the
nearest one, in the direction of motion, i.e., each one of
them moves of an amount 7/N in the cycle so that the to-
tal displacement vanishes. Then, taking the limit N — oo,
we obtain that periodic orbit distributions are stationary
also according to the Kawasaki formalism.

Once the stationarity of the distributions on periodic
orbits has been established (one way or another), its most
important consequence is that the Kawasaki distribution,
supported on the attractor, u!®’ say, can also be proved
to be stationary (in the appropriate weak topology). Here
the subscript ¢ indicates the possibility that the distribu-
tion changes with time. Indeed, if B is an observable tak-
en from the set that defines the topology on the space of
measures under investigation and u!” is the orbital mea-
sure of period T at time ¢ we have

i zi ()
= (B)=— [ B(Ddpu=XT)

_d .. (T y—
= lim [ B(M)du"(r)=0, (20)

which is the statement of stationarity of u!*’ in the
chosen topology, if u{®’ is the limit of the orbital mea-
sures. In particular, let B=1 and consider the Kawasaki
propagator exp(BF, 3 Aq,;(—T)) as a phase variable for
fixed parameter 7. By the POE theory we get

1=lim [dp$(T)

. T—> X

N
=lim [exp |BF, 3 Aqu(T,—T) [dui(T)
T—> © i=1
. N
= [exp |BF. 3 Aqu(T,—T) |dui™(T)
i=1
= [duf () @21

if the orbital measures are normalized to start. Here the
first two integrals are equal by definition of Kawasaki dis-
tribution on periodic orbits. Thus the distribution func-
tion obtained from Kawasaki evolution is always normal-
ized for stationary states. Note that the orbital measures
and the fractal measure have disjoint support, thus the
equality between the second integral and the third in-
tegral of Eq. (21) is not trivially true, as the exponentials
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in the integrals are evaluated over disjoint sets. Such an
equality relies on the applicability of POE techniques.
The last equality, instead, is just the definition of the
evolved stationary measure at time 7, in the assumption
that the Kawasaki propagator can be used in this con-
text. The argument is that we assume the stationary state
to have a density along the unstable manifold of the at-
tractor, similarly to what is done in Ref. [27]. Then, the
Liouville equation and the Kawasaki formalism can be
derived through balances in the volume elements of the
attractor in the same way as they are derived in the full
phase space for the transient measures. Under the same
hypotheses, we get the result of Eq. (20) for the Kawasaki
evolution

N
BF, > Aq(I',—T)

i=1

[ B(Dexp dpl=(T)

N
BF, 3 Aq,(I',—T)

i=1

= lim fB(F)exp du{(T)

=lim [B(D)1dp{ (D)= [ B(D)du(=(T) (22)
T-—> 00

for all times T=7/N (for instance, we can take T <g, ar-
bitrarily small, and then take the limit N,7— o in order
to keep their ratio fixed or to make it progressively small-
er). Again, we see that the stationarity of the Kawasaki
distribution function, in the chosen topology, follows
from POE theory and from the stationarity of the distri-
bution on orbital measures.

VIII. CONCLUSION

In this work we have outlined some of the distinguish-
ing features of nonequilibrium steady states for dissipa-
tive systems with reversible microscopic dynamics, as op-
posed to equilibrium stationary states. The baker’s map
has been used in this context as a pedagogical example,
which exhibits many qualitative similarities with more
realistic models. Among these similarities we have found
the divergence of the entropy and of the density distribu-
tion in the approach to the stationary state. Moreover,
for dissipative systems we have seen that the stationary
distribution is not directly accessible, thus requiring the
use of appropriate topologies for its description, while
this was not necessary for the measure preserving cases.
We have also tested periodic orbit theory as a tool for the
computation of thermodynamic quantities and we have
compared it to the method based on the extrapolation of
transient measure results, which is equivalent to a
method proposed in the molecular dynamics literature
[28].

The nonequilibrium Lorentz gas has been discussed as
an example of a “‘more realistic’’ model and we have seen
that the Kawasaki formalism applies to the transient
behavior of the phase space distribution. This evolves ac-
cording to the contraction and expansion rates of the
stable and unstable manifolds of the system, at all finite
times. Moreover, for large times the evolution is guided
by the unstable periodic orbits, whose stability eigenval-
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ues determine the rates of change of phase space volumes
around them. In contrast, in the stationary state the con-
tracting directions play no role, because the relevant
measure is concentrated on the unstable manifold, which
we assume to be transverse to the stable manifold (hyper-
bolicity assumption [27]). We have also assumed that the
stationary measure, which vanishes in regions with no
periodic orbits, is sufficiently well behaved (SRB-like) on
the surface elements of the unstable manifold. Therefore,
we have applied the Kawasaki formalism to the station-
ary state and we have investigated its properties in terms
of periodic orbit theory. We conclude that there are no
inconsistencies in the treatment of stationary states using
Kawasaki formulas, such as the loss of normalization
along the evolution, at least in those cases where our hy-
potheses are verified. Furthermore, we argue that the
nonequilibrium Lorentz gas is one such case, because
periodic orbit theory has proved applicable and effective
in the study of its properties [7,9,14].

To decide how far an ensemble is from equilibrium we
need some indicator function. All the information to do
this should be contained within the measure, but we have
had to exclude functions of the distribution such as the
Gibbs and Boltzmann entropies, as they are not observ-
ables. However, there is a class of functions of the distri-
bution that can be included as observables and these are
the set of generalized dimensions D(gq) [29]. The
difference between these functions and the ones we ex-
clude is that these are based upon an initial coarse grain-
ing of the measure. A finite result emerges in the limit as
the size of the graining goes to zero. These functions
have the properties that we require of a nonequilibrium
entropy: they are maximum at equilibrium and uniform-
ly decreasing as we move away from equilibrium. As
such we might expect to be able build a thermodynamic
description based on an entropylike function of this type.
The problem is that, in general (for multifractals), there is
an infinite class of such functions, parametrized by the
real variable g. For the baker’s map considered here
(which is a uniform fractal) D(g)=1-+1n2/In3, where the
3 in the denominator comes from the contraction rate of
1. Considering a variable contraction rate of 1/a, we see
that the generalized dimension would be
D(q)=1+1n2/Ina. This generalized dimension is equal
to the full space dimension when the mapping is area
preserving and decreases monotonically as a increases
from the (area preserving) value of 2. The interesting fact
is that generalized dimensions can be calculated from
periodic orbits. In fact, as the periods of the orbits in-
crease, each orbit contributes essentially the same
amount to the measure and the dimension is a measure of
the average local clustering of periodic points.
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FIG. 1. (a) First iteration of the baker’s map acting on a uni-
form measure on the square. (b) Second iteration. (c) Third
iteration. At each step the number of rectangles increases by a
factor of 2 and the density on each increases.



